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ESTABLISHING “More importantly, because the

A PETASCALE assumptions that are made in the
@0IAW-V\:{0]:7:-N(0]:AM development of parameterizations of
FOR THE GEOSCIENCES convective clouds and the planetary
s boundary layer are seldom satisfied,
W< 1 the atmospheric component model

must have sufficient resolution to

/g 55 + dispense with these parameterizations.
oL "N This would require a horizontal
P - W Y | resolution of 1 km.”
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Scientific Frontiers

http.//www.geo-prose.com/projects/pdfs/petascale science.pdf
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Extreme-scale systems will provide
unprecedented parallelism!




But

performance of individual processes has stagnated

4-second
time step...

8 B S multi-century simulation?




Overcoming the time barrier

* Fully implicit time integration
« Multiwavelet discontinuous Galerkin
* Parareal




How to build a new climate model

1. Start with shallow-water equations on the sphere

h* .
aatv -V - (vh™v) = —fk X h*v — gh*Vh
oh*

FV - (hvV) =

o V-(h™v)=0

h=h*+ h, They mimic full equations for

atmosphere and ocean

¥ :



How to build a new climate model

2. Prove yourself on standard tests

geop at level = 0 time=12 days
TR IR |

90N I | | I | |

60N
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60S

QOS T T T T T T T T T T T T T T T T T T
I I I I I I I I
180 150W 120W 90W ©60W 30W 0 30E 60E 90E 120E 150E 180

0 100 200 300 400 500 600 700 800 900 1000

Defined by Williamson, Drake, Hack, Jakob, and Swarztrauber
% in 1992 (~150 citations)
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How to build a new climate model

3. Proceed to 3D tests and inclusion in a full model

That’s all there is to it!

19



Overcoming the time barrier




Explicit good and bad

- Good

- Highly parallel
- Nearest-neighbor communication

- Bad

- Numerically unstable (blows up) for At > O(Ax)
- Increase resolution = decrease Ax — decrease At

¥ 21



Implicit bad and good

- Bad

- Must solve a (nonlinear) system of equations

- Good

- Numerically stable for arbitrary time steps

* Ugly

- Still need to worry about accuracy (for big time steps)

¥ .



Implicit + shallow water
(Kate Evans)

- Start with HOMME shallow-water code

» Convert explicit formulation to implicit

- Use Jacobian-Free Newton Krylov (JFNK)
» Solve with Trilinos

http.//trilinos.sandia.gov/

23



HOMME

- High-Order-Method Modeling Environment

* Principal developers
- NCAR: John Dennis, Jim Edwards, Rory Kelly, Ram
Nair, Amik St-Cyr
- Sandia: Mark Taylor
- Cubed-sphere grid
- Spectral-element formulation (and others)
- Shallow-water equations (and others)

[
% o4 image courtesy of Mark Taylor




Test case 1: cosine bell
Initial condition

geop at level = 0 time=0 days
QONll.IHIHIH AR AR SRR NI R

QOS I ) ) I ) 1 I 1 1 I I 1 1 1 I 1 I I ) 1 I 1 I | I I

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

e - T

0 100 200 300 400 500 600 700 800 9001000
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Strong scaling

*6 X 10 x 10 elements

* 16 X 16 points per element

» 26 vertical levels

* Fixed problem size, increase processes

* Explicit versus unpreconditioned JFNK
- 30 s time step for explicit

- 720 s time step for JFNK
- Similar Lz error

¥ .




Simulated years per day (SYPD)

Strong scaling on Jaguar
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Weak scaling

*6 X (4x4to 10 x 10) elements

* 16 X 16 points per element

» 26 vertical levels

- Constant number of elements per process
* Increase processes

* Explicit versus unpreconditioned JFNK
- Shrinking time step for explicit
- Constant 720 s time step for JFNK
- But increasing iterations per solve

¥ .




Simulaled years per day

10

Weak scalin

g on Jaguar

JFNK
- = = Explicit
- = Normalized JFNK

0 200

400 600 800

1000 1200 1400

Number of processors = Number of elements
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Simulaled years per day

10

Weak scaling

JFNK
- = = Explicit
- = Normalized JFNK

If solver iteration count
were constant
(maximum)
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400 600 800 1000 1200 1400
Number of processors = Number of elements
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Test case 2: steady state

» 12 simulated days
- Explicit

- 4-minute time step

- 28s runtime
* Implicit

- 12-day time step

- 3.6s runtime

¥

geop at level = 0 time=0 days
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Test case 5: Flow over a mountain

geop at level = 0 time=15 days
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Potential Preconditioners

« Semi-implicit solver

» Overlapping Schwarz

- Multigrid with overlapping-Schwarz smoother
* Lott and Elman (U of MD) spectral-element
preconditioner

33



Overcoming the time barrier




Multiwavelet discontinuous Galerkin
(Rick Archibald)

- Multiwavelet basis

- Adaptive

- Sparse
» Discontinuous Galerkin on cubed sphere
» Exact Linear Part (ELP) time integration

- Allows large time steps at high accuracy
- Multiwavelets maintain sparsity

¥ .
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Test case 1

Table 1. Convergence rates for Example 1 using RK4 and ELP time stepping for the
multiwavelet DG method with order & = 3 and drop tolerance ¢ = 10" for the ELP
with CFL= 4.8 and ¢ = 10" otherwise. The number of non-zero elements for each
operator is give by N..

RK4 (CFL = 0.3) ELP (CFL = 4.8) ELP (CFL = 18.2)

N La error Order N. Lz error Order N. Lz error Order N.
cosine bell

4 1.98¢-1 - 0.7¢5  1.98¢e-1 - 2.9¢5 1.906e-1 - 1.5eh
o) 4.04e-2 230 24¢h6 4.18e-2 225 2.05c6 4.1le-2 226 8.2eh
16 T.03e-3 242 99eh T.6le-3 246 1.0e7T 7.71e-3 2,14 3.4e7
Gausstan hill

4 2.0e-2 - 0.7¢H 2.0le-2 - 0.9¢hH 2.02e-2 - 1.5e6
o) 3.04e-3 272 24ehb 3.06e-3 2.72 2.5eh 3.08¢-3  2.72 8.2eh
16 3.06e-4 3.0 99eh 3.62e-4  3.08 1.0e7T 3.63c-4  3.08 3.4de7

37



Test case 1

Table 1. Convergence rates for Example 1 using RK4 and ELP time stepping for the
multiwavelet DG method with order k = 3 and drop tolerance ¢ = 10" for the ELP

with CFL= 4.8 and ¢ = 10 " otherwise. The number of non-zero elements for each
operator is give by N.. Up to 60x time step

RK4 (CFL = 0.3) ELY (CFL = 4.8) ELP{H{CFL = 18.2)
N Lo erroyr=— e L2 errr— L2 error=—trrrie -
cosine bell
4 1.98¢-1 - 5.7¢ehH  1.98¢e-1 - 5.9¢5  1.96Ge-1 - 1.5e6
bo) 4.04e-2 230 24ehb 4.18e-2 225 2506 4.11e-2 2,206 8.2eh
16 T.03e-3 242 99ch T.6le-3 246 1.0e7T 7.71e-3 2,14 3.4e7
Gaussian hill
4 2.0e-2 - 0.7¢d  2.0le-2 - 0.9eh 2.02¢-2 - 1.5eh
bo) 3.04e-3 2.72 24¢h6 3.006e-3 2.72 25c6 3.08¢e-3  2.72 R.2eh
16 3.00-4 3.0 99eh 3.62e-4  3.08 1.0eT 3.63c-4  3.08 3.4de7
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Test case 1

Table 1. Convergence rates for Example 1 using RK4 and ELP time stepping for the
multiwavelet DG method with order k = 3 and drop tolerance ¢ = 10" for the ELP
with CFL= 4.8 and ¢ = 10 " otherwise. The number of non-zero elements for each
operator is give by N..

RK4 (CFL = 0.3) ELP (CFL = 4.8)  ELP (CFL = 18.2)

N Lyerror Order N.  Lierror Order N. Lz error Order N.
cosine bell

4 D.7e5 0.9e5f 1.96¢e-1 1.5e6
bo) 2.deh 2.0e0)] 4.11e-2) 2.26 8.2eh
16 9.9¢h 1.0eT) 7.71e-31 2.14 3.4e7
Gaussian hill

4 5.7e0 0.9e5] 2.02¢-2 1.5e6
R 2.4eh 2.5e6] 3.08¢-3 R.2eh
16 9.9¢h 1.0eTl 3.63¢-4 3.4e7

Identical L> error

39



Test case 1

Table 1. Convergence rates for Example 1 using RK4 and ELP time stepping for the
multiwavelet DG method with order £ = 3 and drop tolerance ¢ = 10 ' for the ELP
with CFL= 4.8 and ¢ = 10" otherwise. The number of non-zero elements for each
operator is give by N..

RK4 (CFL = 0.3) ELP (CFL = 4.8)  ELP (CFL = 18.2)

N Lo error Order N. Lserror Order N. Lz error Order N
cosine bell
4 1.98¢-1 1.9%¢-1 1.96c-1

o) 4.04¢-2 1.18e-2 dle-2
16 7.03¢-3 (.Ole-3 7.71e-3
Gausstan hill

4 2.0e-2 2.01e-2 2.02¢-2
bl 3.04¢-3 3.06e-3 3.08¢-3
16 3.6e-4 3.62¢-4 3.63e-4

3x change in sparsity

40



Multiwavelet DG

» Early results for nonlinear test cases are
promising

¥ :



Overcoming the time barrier

* Fully implicit time integration

* Multiwavelet discontinuous Galerkin
 Parareal




Parareal

» Algorithm published in 2001 by
Jacques-Louis Lions,
Yvon Maday,
and Gabriel Turinici

- Variants successful for range

of applications

- Navier-Stokes

- Structural dynamics
- Reservoir simulation

¥ .




Parareal

Start with serial coarse time steps

¥ 44



Parareal

W >
W
W >>>>

¥

Starting from coarse points,
do fine time steps in parallel

45

s

.

L



Parareal

Get fine-scale corrections to coarse states

¥ .
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Parareal

oot

=

Propagate accumulated corrections
serially with coarse time step
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Parareal

- lterate until corrections are negligible
* Published results by others: 2-3 iterations

* We have success with 1D Burgers
- Relevant?

» Stable integration of advection-dominated
problems will be a challenge

¥ .



Overcoming the time barrier

* Fully implicit time integration
« Multiwavelet discontinuous Galerkin
* Parareal




Overcoming the time barrier

* Fully implicit time integration
- Preconditioners

- Multiwavelet discontinuous Galerkin
- Nonlinear problems
- Parallel implementation

- Parareal
- Stability for advection
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